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Steady supersonic plane flow past thin profiles is considered. It Is assumed 
that the gas is of slight viscosity, and that the shock waves which arise are 
of small intensity. The flow properties are assumed to be functions, not 
only of the wave parameter T=;m-my 
small extent on one of the coordinates, 

but, in addition, to depend to a 
In this case the problem can be 

reduced to the solution of a quasilinear parabolic equation (2.1). 

The resulting equation permits the construction, on an approximate basis, 
of a complete picture of the behavior of shock waves at any distance from a 
streamlined profile. The essential influence on the front of the shock wave 
results from its interaction with a rarefactlon wave,. The estimated thick- 
ness of the front of the shock wave is determined by use of a parabolic equa- 
tion, showing that as long as the shock front is not coming into contact 
with the rarefaction wave, its thickness has almos,t constant value. But as 
soon as interaction with the wave takes place, there begina a diffusion of 
the front proportional to the square root of the distance from the profile. 
In addition, the position of the shock wave changes. Its linearity is vio- 
lated. In certain cases the solution of the problem posed can be reduced to 
simplified equations: 
tion (5.3). 

the qua&linear equation (3.1) and the linear equa- 
In the course of the paper the limits of applicability of these 

equations are shown. 

1. The problem of plane steady supersonic flow of a gas past thin pointed 
profile parallel to the ~-axis will be solved. It will be assumed that a 
shock wave orlglnatlng at the edge of the profile Is of small intensity. 
Thereby, the characteristic parameters of the flow - velocity v , pressure 
p , and density of gas p , experience disturbances of the same order of 
smallness in p . For the sake of convenience the scale of length is taken 
as the molecular mean free length L . Then the shock wave thickness will 
be at least of order l/p relative to the chosen scale. Therefore, it is 
natural to assume that,-inside the shock wave, differentiation with respect 
to the l,oordlnates x and I/ raises the order of smallness of the charac- 
teristics of the stream, Due to the dampllng of the disturbance, these 
bounds remain true on the shock wave and also in the refraction wave. 

It will be assumed that the dissipation process In the gas is everywhere 
smal1. The coefficients of viscosity n , C and the coefficient of heat 
conduction x In the free stream of gas vary little, in any case p times 
slower than th: basic characteristic Parameters of the flow. 

In this case the original system of equations in Rulerian coordinates has 
the form 
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p (VW v = - VP -t- qnv + (5 -t- r/371) v (Vv) (I.11 
hi 

pTvvS =z xv’ T + G~;X (1.2) 
k 

v (PV) = 0 (1.3) 

Here s is the entropy, 
stress tensor, 

T the absolute temperature and a:, the viscous 

Gik =-11 2 + 2 - ; bik!& + @,, s 
( ) 

(1.4) 
1 1 1 

It is necessary to supplement the system of equations (1.1) to (1.3) with 
the equation of state of the gas and certain relations connecting thermodyna- 
mic quantities. In what follows, for the sake of simplicity, the equation 
of state will be taken as that for an Ideal gas p = pAT . 

Processes In the boundary layer are not dealt with, boundary conditions 
can be written for the outer side of the boundary layer and, at Infinity, 
all disturbances are consldered to be damped out. 

Firstly, let us transform the heat conduction equation (1.2). From the 
total differential of the temperature T , expressed as a function of pres- 
sure and entropy, It follows that, for steady flow, 

V~=(~)~v~+(~)pV~~(~)sv~ (1.5) 

since, for shock waves of small intensity, the variations of entropy In the 
Interior of the wave are of the second order of smallness in comparison with 
the Increment of pressure. Further 

VW? = (~~)s(V~,'-~- ($)s V"P z(E)~ v2p (1.6) 

since (Vp)z<Vzp, Thus, to within terms of the third order of smallness 
lncluslve, 

dT 
pvvs &iX lp SV2p 

( 1 (1.7) 

On the other hand, the total differential of pressure, expressed as a 
function of volume V and entropy, and the known thermodynamic relations 

(;),=$($ @),=-;(gjV, cp -c~=T(~)~($)~ (1.8) 

may be similarly expressed as gradients of pressure, density and entropy 

vP==(~)~vP+(~)sj~~-~)v~ (1.9) 

Substituting the expression for VS In Equation (1.9) from (1.7) the 
equations of heat flow can be written In the form 

vvP= v dp s (““) GPS $ (& - i, VP (1.10) 

If we now substitute vp In this from the Navler-Stokes equations then 
It Is possible to exclude one other variable - the pressure p . In addition, 
within the scope of the assumed accuracy, It can be stated that (ap/ap)s is 
equal to the square of the velocity of sound a’. Moreover, it is easy to 
show that, for Ideal gases, 

a‘2 = 4 -*/2 (T - 1) (u2 - Vi?) + 0 (11') (r = cp / cv) (1.11) 

Here a, Is the velocity of sound in the undisturbed medium, v0 Is the 
velocity of the undisturbed gas flow. 



Shock “wee getterMed by the flow of I &M PMt thin &WoflleS 689 

Terms of the second order of smallness in Equation (1.11) are connected 
with the dissipation. In Equation (1.10) they do not enter because of the 
small factor Vp . As a result we obtain the equation in the form 

p (VV) v + &7p_[(f 1, -1 6) -;X(;;-+J~v f 

+ [( 5 -c- + n) -t x ($ t)] rot (rot. v) 

The curl of the velocity v In the problem considered has order #. A 
brief proof of this can be summarized as follows. Let us apply the operator 
rot to the Navler-Stokes equations (1.1) and express 7~ by means of Equs- 
tlon (1.12), then we obtain an equation of the form 

I 

vvo + ovv- f V”o = 0 (pj) 
t 

au!, av.v 
u=az-alJ 1 (1.13) 

Now we can use the method of successive approximation. The second and 
third terms of the left-hand side of J?quatXon (1.13) have a very high order 
of smallness, not less than $ . Since U- I’,,, , then VW must be of the 
same order. On differentiation with respect to-the coordinates the order Is 
raised. Therefore, 70 _ p5, o -pa, and the middle term WV\’ - {fi. From 
this It follows that the derivative of the vorticlty must have order 11” 
but the vorticlty itself Is of the fourth order of smallness. 

The result obtained Is not unexpected. Although the dissipation processes 
violate isentropic character of flow, yet, at the same time, they are the 
causes of smoothing all processes. In consequence of this the flow considered 
Is quasipotential in the approximation assumed. 

Thus, in Equation (1.12) the last term on the right-hand side should be 
dropped. 

‘Then we may state that 

(1.14) v,, = odx + f (Y) = 

The integral of the GT1ocit.y ha?order u3 
f(Y) = 0. 

Si%e u (-00 Y)=O then 
A final calculation of the order of’quantltle5?‘ln &atidn (1.12), 

‘the equation of continuity (1.3), Expression (1.11) and Equation (1.14) give 
the quasilinear equation of the process 

_-a - 
(1.15) 

with the coordinates JC 
length L, M the Mach 

& = M2 - 1 

The equation is written in dimensionless form, 
and Y normalized in terms of the mean free path 
number of the undisturbed flow and 

(1.16) 

Without the right-hand part Equation (1.15) repreSentS the known qUaSi- 
linear equation of potential flow of an ideal gas. The right-hand part 
represents dissipation in the medium. 

2. In the linear approximation Equation (1.15) is reduced to the one- 
d’mensional wave equation. In the space above the flow past surface (Yr 0) 
the solution of this equation has the wave form with parameter q = x - mY. 
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This ives us the right to suppose that the general solution of Kquation 
(1.157 is also a function of the wave parameter T , but, In addition, it 
still depends weakly on one of the coordinates zc or This means that 
the derivatives of u with respect to this variable ar! of order u higher 
than Its derivatives with respect to 1 . To be definite it is assumed that 
u = U(T, py). 

From this it follows that the velocity u Is not constant on the charac- 
teristic 7 = JC -my , and accordingly, In a concie’te problem, varies slowly 
from point to point on the characteristic. It should be noted that anal’o- 
gous methods were studied In problems of wave propagation [l]. Then, by 
virtue of the statement concerning orders of smallness of derivatives Aqua- 
tlon (1.15) takes to form 

1 M4 
6 =Yj-vm (2.1) 

The equation obtained can be written in another form 

ae Fy=b$ ( 6 I ae 
U=-a-G-& ) (2.2) 

In a thin boundary layer, the tangential component of velocity varies 
considerably more quickly than the normal component. Therefore, the boundary 
condition for Equation (2.1) or (2.2) may be written at the outer side of 
the boundary layer in the form 

n.v = 0 (n normal to the profile) (2.3) 

Thus, the problem may finallybe formulated as follows. 

Find a bounded function u or 8 (y > 0, - 00 < r < 00)~ Satisfying wua- 
tion (2.1) or (2.2)-and the boundary conditions (2.x), prescribed on a stream- 
lined profile. For thin bodies at le of attack equal to zero, cpndltlon 
~~i~)f$;;o;e pre~c;;;;~ a; v zdy dx (for I/= O), where I(x) iS the Pro- “39 

-then the boundary conditions for Equa- 
tlons (2.1) id (2.2) respect?velyhave the form 

1 df -- 
“y=o = - no dz x=5 ’ 0 

a df 
Ii=0 = exp - - i ) mhdc r=: 

Expressions (2.4) are written for the upper half plane. 

It should be noted that the quasilinear parabolic equation (2.1) is 
encountered In aerodynamics. It is known ‘that it can arise in two problems, 
In the approximate theory of weak unsteady shock waves In real fluid and in 
the theory of turbulence. However, until now, the derivation of Equation 

and also the case of steady supersonic flow was not 

3, Let us examine the particular case when dissipation processes are 
lnflnlteslmally small. We then use the quasilinear equation 

It Is easy to show that Its solution may be written in the form 

z = 2ayu + t0 (u) (3.2) 

Here 7 (u) Is a function defined by condition (2.4) and the first term 
on the rig&t-hand side exists only in the region of prescribed TV. 

For a plane wedge with zero angle of attack the profile function Is 

0 (x < - 0 

f= k(rf0 (-1<Z<O)@+p) (3.3) 

kl (x > 0) 
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Therefore 

20 = 
--I (O>u>-k/m) 

0 
(3.4) 

(u< -k/m) 

In Fig.1 tne graph of the profile and the solution 1~ for definite values 
of I/ are shown. From physical considerations the left edge of the wave 

stops at the point B , corresponding to a mean 
value of the shock perturbation velocity u . In 
otherwords, theareas of the triangles ABC and 
DEC must be equal. The va)ue corresponding to 
the point D Is 

71 = - 1 - akm-ly = - 1 - ljgz’ (3.5) 

It defines the angle of Inclination of the shock 
wave S with the direction of the free stream. 

UII'P = [m - 'Ia (7 $ 1) i144m-2k]-1 (3.6) 

The right slope of the trapezoid-shaped Impulse 
relates to the expansion wave R . With Increase 

Fig. 1 In distance I/ , the thickness of this wave grows 
and, finally, for the value 

lm 4 m21 -- 
y* = iii = 7 + ‘I M4k (3.7) 

Its left edge will stop without fall at the shock wave. At this moment the 
graph of u degenerates Into a triangle (Fig. 2) and the value of the shock 

velocity begins to fall according 
to the law 

Fig. 2 
f22 = 4lkm-‘ay = 261 (3.9) 

Thus, If up to the value of 
the Inclination of the 

shock wave Is constant, then, for y > Y,,, w th Increase ln distance from 
y = Y,J 

the wedge this slope diminishes and approaches l/m , In accordance with 

(3.10) 

The physical picture is clear. The Interaction of the shock wave S with 
the expansion wave A Inevitably leads to the weakening of the shock wave 
Intensity and, by the same token, to the change of the front position. At 
large distances from the profile, when the shock wave Is essentially damped 
out, its behavior Is determined ta U.ne~l~~rboUc equation (see %&Ion 5). 
Therefore, tancp- l/m (Flg.3). The conclusions reached here coincide 
exactly with known results [2 and 5 to 71. 

To get a complete representation of this Interaction It Is necessary, even 
If on an approximate basis, to estimate the thickness of the shock wave. 
This can be done only by means of an analysis of the full equation (2.1). 

4. According to (2.4), the solution of the heat conduction equation has 
the form 

m __ 

- w + 3 f (&l-j dE (4.1) 
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For a plane wedge, with relations (3.3) 

It is assumed that IT -k c’ -!-ll>b, /ZfZ’I&b, IT-klI>b, IzI>b. 
Then, uslng the asymptotic error integral, we can find an approximate expres- 
sion for the function u . 

Fig. 3 Fig. 4 

As in the case of the quasilinear equation (3.1), we must distinguish 
between two ranges of values of the parameter r'. When T'< 2 , f ~1 has 
approximately a trapezoidal form (depending on 7 ) and, for 1~ < 7' it is 
expressed as follows: 

u z kt / tm’ + 0 (p”) (4.6) 

This corresponds to an expansion wave, and, to an accuracy of terms of 
the second order of smallness, coincides with the solution of (3.1). Small 
terms in (4.6) indicate a smoothing out of the ends of this wave at the 
expense of dissipation in the medium (Fig.4). 

If [Tl> T’, then in the neighborhood T,= - 1 - T’/Z 

(4.7) 

Since ]%t' (z $- 231> o', then the exponent defines the position of the 
steep shock front, as In (3.5). 

Expression (4.7) enables us to estimate the thickness of the front of the 
shock wave (measured along the direction of the free flow). 
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f 
4 taPfl=n f 

X 

Fig. 5 

Using the relations 

ba 4 Vm -- A~=Ax=~=~++ vok 

593 

(4.8) 

The expression for the shock front thickness Is 
consistent with formulas previously obtained [5 and 
81 . Thus, for example, It Is shown (53, that.at a 
small Intensity of the shock wave the thickness of 
the shock Is 

4vv= 

A = (pa - pJ (W / i9p”)& 

where p, and pt, respectively, are the values of 
pressure before and after tWe shock. 

Pl 

where 6 Is the 

When 7'> 21, 
l.e.on this part 

wedge angle, we can obtain Formula (4.8) from (4.9). 

then up to 171 = 21, the previous argument Is correct, 
again u 2 kT/mT’. For T'> Ir(>l 

za - 2t’t -1 
exp b2 1 (4.10) 

In this expression the exponential term Is essential for the formulation 
of the wave front, the second term gives an expansion wave. In the nelghbor- 
hood TV'= 27'1 u Is reduced to b times relative to Its maximum value. 
Here T 

An 
Is the same as In (3.9) and defines the front boundary of the shock 

wave. estimate of the thickness of the shock wave front now gives 

(4.11) 

ThUE ) 
not only 
arises a 

As Is 

the Interaction of the expansion wave with the shock wave causes 
a reduction In the shock wave strength. Together with this there 
spreading, the extent of vlscoils Interaction Is Increased. 

seen from (4.11), the thickness of the shock wave depends, as before, 
on the parameters of the free flow, the Intensity of the wave and the dls- 
slpatlon In the medium. But, In addition, In the case considered, the thlck- 
ness gradually Increases proportionally to the square root of the distance 
from the streamline profile. 

The existence of a diffusive spread of the shock wave occurs In practice 
for any form of streamlined wedge profile. A calculation, not given here, 
for example, can be carried out to estimate the thickness of the front for 
a parabolic profile 

Is 
f (x) = i;s (1” - x”) (---1,(x\(O), f (x) = ; (x > 0) 

shown In Plg.5. With the notation used 

AX--T _ y (f + 1 )I’* ($.12) 

It is clearly seen, that If T’ i l< 1 (for lay / 1< I), then the shock 
front thickness Is again constant. For values ky/ l> 1 

(4.13) 
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5. As was seen above, all relations are to be defined in terms of para- 
meters b and T’ , which both depend on the distance E/ . 
follows from (4.5) there can be two distinct cases (Fig.6). 

Therefore, as 

If b s z’, then Equation (2.1) in ractice reduces to a linear form. 
Indeed, the exponents in expression ( E .4) then vary slowly, and therefore 

Z j- A s 1 + $=g ([ emx*dr + $ e-“ds) = 1 + z 

P 
(5.1) 

where the integral term on the right-hand side, s , is small. Taking this 
into account we obtain 

Z 
Qa 

42.’ 
t ’ 

Now the process is described with sufficient 
accuracy by 

au Bu 
;j-==aa,a (5.3) 

Q# yl Y From this it follows that the shock wave _ 
and expansion wave decay equally A,r- b- I/y. 

Fig. 6 For small Y the relation b > Z’ holds 
everywhere. But as the coordinate y is 

increasecl, the parameter in the inequality referred to necessarily changes 
sign(for Y=Y,). The picture of the behavior of the gas in space depends 
on the distance from the profile to be considered. In case 

8??+V 

?A= (7 + I)” Mh, < y* (5.4) 

on the section yI c 71 <I/+ the front of the shock wave has constant thick- 
ness, defined only by the stream characteristics. If b and 7’ are equal 
for pi, exceeding Y+ , then the relation giving the thickness of the front 
in terms of distance remains valid however far we recede from the profile. 
The interaction of the shock wave with the expansion wave Is somewhat inten- 
sified by this relation. The last case Is possible for very small apex 
angles of the wedge or for rather dissipative media. In the case Yl*Y* 
the meaning of the shock wave Is asaentially lost. 

Thus, if %@YY*~ then the problem is described by Equation (2.1). When 
Yl > Y*, su~~~tacc~a~y can be obtained by using the linear equation 
(5.3). 

The authors are indebted to Kh.A. Rakhmatulln, M.D. ladyzhenskii and 
V.A. &oshln for useful discussions. 
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