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Steady supersonic plane flow past thin profiles is considered. It is assumed
that the gas 1s of slight viscosity, and that the shock waves which &rise are
of small Intensity. The flow properties are assumed to be functions, not
only of the wave parameter 1 = x — my but, in addition, to depend to a
small extent on one of the coordinates. In this case the problem can be
reduced to the solution of a quasilinear parabolic equation (2.1).

The resulting equation permits the construction, on an approximate basis,
of a complete picture of the behavior of shock waves at any dlstance from a
streamlined profile. The essential influence on the front of the shock wave
results from its interaction with & rarefaction wave. The estimated thick-
ness of the front of the shock wave is determined by use of a parabolic equa-
tion, showing that as long as the shock front is not coming into contact
with the rarefactlon wave, its thickness has almost constant value. But as
soon as Interaction with the wave takes place, there begins a diffusion of
the front proportional to the square root of the distance from the profile,
In addition, the position of the shock wave changes., Its linesarity is vio-
lated. In certain cases the solution of the problem posed can be reduced to
simplified equations: the gquasilinear equation {3.1) and the linear equa-
tion (5.3). In the course of the paper the limlts of applicabllity of these
equations are shown.

1. The problem of plane steady supersonic flow of a gas past thin pointed
profile parallel to the x-axis will be solved. It will be assumed that a
shock wave originating at the edge of the profile 18 of small intensity.
Thereby, the characteristic parameters of the flow — velocity v , pressure
p » &and density of gas p , experlence disturbances of the same order of
smallness in yu . For the sake of convenience the scale of length is taken
as the molecular mean free length 7 . Then the shock wave thickness will
be at least of order 1/u relative to the chosen scale., Therefore, it is
natural to assume that, -inside the shock wave, differentiation with respect
to the ~oordinates x and y ralses the order of smallness of the charac-
teristics of the stream. Due to the dampling of the disturbance, these
bounds remain true on the shock wave and also in the refraction wave,

It will be assumed that the dissipation process in the gas is everywhere
small, The coefficlents of viscosity n , { and bhe coefficient of heat
conduction x , 1n the free stream of gas vary little, in any case u times
slower than the basic characteristic parameters of the flow,

In this case the original system of equations in Bulerlan coordinates has
the form
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p (VW) v = —Vp -+ nAv + (L +1m) T (V) (1.1
, 0p;

pTv/S = =73 T - Gik?ﬁ (1.2)

Vpv) =0 (1.3)

Here 5§ 1s the entropy, T the absolute temperature and a; the viscous
stress tensor,

v, v, v oy,
_ . = i v ;
s =1 5w, o, 3 > b o) o B, (1.4)

It 1s necessary to supplement the system of equations (1.1) to (1.3) with
the equation of state of the gas and certain relations connecting thermodyna-
mic quantities. In what follows, for the sake of simplicity, the equation
of state will be taken as that for an ideal gas p = pRT .

Processes in the boundary layer are not cdealt with, boundary conditions
can be written for the outer side of the boundary layer and, at infinity,
all disturbances are considered to be damped out.

Firstly, let us transform the heat conduction equation (1.2). From the
total differential of the temperature T , expressed as a functlon of pres-
sure and entropy, 1t follows that, for steady flow,

since, for shock waves of small intensity, the variations of entropy in the
interior of the wave are of the second order of smallness in comparison with
the increment of pressure, Further

V(@1) = (50 (P (55)s 72 = (505 v (1.6)

since (Vp)* <€ V?p. Thus, to within terms of the third order of smallness
inclusive,

pvVS = T ( P) V?p (1.7)

On the other hand, the total differential of pressure, expressed as a
function of volume ¥V and entropy, and the known thermodynamic relations

v Cp (0T op cv(ap) _ (@) (ﬂ’_) ]
(37')1)= T (3—1))5’ («W)vz_T oshv % —ev=Tl\ar)y\oT), (B
may be similarly expressed as gradients of pressure, denslty and entropy
_(op T Vo L L\ S 1.9
VP = (35)s Vo + (o795 )s oy =) V (1.9)

Substituting the expression for S in Equation (1.9) from (1.7) the
equations of heat flow can be written in the form

’

vor= () vor = (s ) v (1.10)

If we now substitute Y/p in this from the Navier-Stokes equations then
it 1s possible to exclude one other varlable — the pressure p . In addition,
within the scope of the assumed accuracy, it can be stated that (ap/bp)

equal to the square of the velocity of sound g? Moreover, 1t 1s easy to
show that, for ideal gases,
e = ag =12 (y — 1) (v* — 1) + O (v) (v = ¢yl ey) (1.11)

Here g, 1s the veloclty of sound in the undisturbed medium, v, 1s the
velocity of the undisturbed gas flow.



Shock waves generated by the flow of a ghs past thin profiles 689

Terms of the second order of smallness in Equation (1.11) are connected
with the dissipation. In Equation (1,10) they do not enter because of the
small factor /p . As a result we obtaln the equation in the form

p (YY) v + a?Vp= [(—i— n -+ ;) "1'“(’3;——%1;)] AV +

| 1
+[(§ -F%—n) -}-x(——————)Jrob (xot v) (1.12)
ey p

The curl of the velocity v 1in the problem considered has order uy*. A
brief proof of this can be summarized as follows. Let us apply the operator
rot to the Navier-Stokes equations (1.1) and express p by means of Equa-
tion (1.12), then we obtain an equation of the form

n_, . / dv, 6vx)
VW0 + 0V — T % = 0 () (m= ] (1.13)

Now we can use the method of successlve approximation. The second and
third terms of the left~hand side of Equation (1.13) have a very high order
of smallness, not less than pﬁ . S8ince v~ 13, , then Vo must be of the
same order., On differentiation wilth respect to the coordinates the order is
raised. Therefore, V%@ ~pub, © ~ pu3, and the middle term ov ~ W. From
this it follows that the derlvative of the vorticity must have order p°
but the vorticlty itself is of the fourth order of smallness.

The result obtained 1is not unexpected, Although the dissipation processes
violate isentropic character of flow, yet, at the same time, they are the
causes of smoothing all processes., In consequence of this the flow considered
is quasipotential in the approximaticn assumed.

Thus, in Equation (1.12) the last term on the right-hand side should be
dropped.

Then we may state that

x x x
- du, y \ 6ux
L‘H = \ _0'/ dx - \ odx + f (y) =~ X d_y dx (1.14)
-0 -~ —co

The integral of the velocity has order u® . 8ince v (—oo,y)=0, then
fyp)=0. A final calculation of the order of quantities'in Equation (1.12),
the equation of continuity {1.3), Expression (1.11) and Equation {1.14) give
the quasilinear equation of the process

. L ou o du { du
[m? 4 (v + 1) M3u) 7% + 2111"6‘{/ @dx
~o0
9 ¢ i) a? 9*
\ du . u u .
—t—-1 Jl'ﬁt]@( % aTde) == v.M? (5‘;2—{— 3?) (1.15)

- 00
The equation is written in dimensionless form, with the coordinates x

and y normalized in terms of the mean free path length L, u the Mach
number of the undisturbed flow and

v, = g 4+ ), v, == Lyv, M = vy / g, m? = M? —1
1 /4 11
sl 8=l )] (419

Without the right~hand part Equation (1.15) represents the known guasi-
linear equation of potential flow of an 1deal gas. The right-hand part
represents dissipation in the medium,

2. In the linear approximation Equation (1.15) is reduced to the one-
dimensional wave equation. In the space above the flow past surface (y> 0)
the solutlon of this equation has the wave form wilth parameter ¢ = x — my.
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This gives us the right to suppose that the general solution of Equation
(1.15} 1s also a function of the wave parameter r , but, in addition, it
still depends weakly on one of the coordinates x or y . This means that
the derivatives of y with respect to this variable are of order u higher
than %ts degivatives with respect to ¢ . To be definite it is assumed that
U = ulT, py/.

From this it follows that the velocity u 1is not constant on the charac-
teristic ¢ = x —my , and accordingly, in a concréte problem, varies slowly
from point to point on the characteristic., It should be noted that analo-
gous methods were studied in problems of wave propagation [1]. Then, by
virtue of the statement concerning orders of smallness of derivatives Equa-
tion {1.15) takes to form

u ou o%u 1 M4 1 M
5 2au g = 853 (a:Z(T+1)7n—, 6=§—v;> 2.1)
The equatlon obtalned can be written in another form
2 _p28 (- bpom
oy — 0 %2 U=—38 ac) (2.2)

In a thin boundary layer, the tangential component of velocity varies
considerably more quickly than the normal component. Therefore, the boundary
condition for Equation (2.1) or (2.2) may be written at the outer side of
the boundary layer 1in the form

nv=20 (n normal to the profile) 2.3)

Thus, the problem may finally be formulated as follows.

Find a bounded function u or © (y >0, —oco <t < 00), satisfying Equa-
tion (2.1) or (2.2)-and the boundary conditions (2.3), prescribed on a stream-
lined profile. For thin bodies at le of attack equal to zero, condition
(2.3) might be prescribed as v = df/dx (for y= O), where f(x) 1s the pro-
file function. And since v = — mu, -then the boundary conditions for Equa-
tions (2.1) and (2.2) respectively have the form

- L4 6 - (g_ df)
Yy=0 = T o dt s ! y=0 = XP\ 8 4t Jxee (2.4)
Expressions (2.4) are written for the upper half plane.

It should be noted that the quasilinear parabolic equation (2.1) 1s
encountered in aerodynamics. It is known ‘that it can arise in two problems,
in the approximate theory of weak unsteady shock waves in real fluld and in
the theory of turbulence., However, until now, the derivation of Equation
(2.1) was not given, and also the case of steady supersonic flow was not
consgldered.

., Let us examine the particular case when dlssipation processes are
infinitesimally small, We then use the quasilinear equation

du ou
5@—1— 2au51~: = 3.1)
It 1s easy to show that its solution may be written in the form
T = 2ayu + 14 (v} (3.2)

Here 1t,(u) 1s a function defined by condltion (2.4) and the first term
on the right-hand side exists only in the regilon of prescribed r,.

For a plane wedge with zero angle of attack the profile function 1is
0 (e l—1D
f=Hk@+) (—1<z<O) (k~p (3.3
kl (x> 0)
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Therefore

_ 1! O>u>—k/m) 3.4
To {0 (u<-—k/m) ()

In Filg.l tne graph of the profile and the solution uy for definite values
of y are shown. From physical considerations the left edge of the wave
stops at the point 5 , corresponding to a mean

f value of the shock perturbation velocity u . In
. other words, the areas of the triangles 4pC and
l DEC must be equal. The value corresponding to
tan U=/ the point p 1is
) Z
catp e T= =l okmly = — =1y (3.5)
O
% 8 \\ L4 It defines the angle of inclinatlon of the shock
e 1m wave S with the direction of the free stream.
$ I -‘-—zb(u) =t P
7\ r wn @ = [m — Y, (y + 1) M*m 2] (3.6)
1
g4 T
The right slope of the trapezold-sheped impulse
relates to the expansion wave R . With increase
Fig. 1 in distance y , the thickness of this wave grows
and, finally, for the value
Im 4 m¥
Ye = @k =7 F 1 M% (3.7

its left edge will stop without fail at the shock wave. At this moment the

graph of y degenerates into a triangle (Fig. 2) and the value of the shock
velocity begins to fall according
to the law

u=— (1—;!)/ (3.8)

The position of the shock
wave will now be defined by Equa-
tion

T2 =4lkm™ay = 2t'1  (3.9)

Thus, if up to the value of

X = Yus the 1nclination of the

shock wave is constant, then, for y > y,, with lncrease in distance from
the wedge this slope diminishes and approaches 1/m , in accordance with

:11_: = [m - (%)l/']_l (3.10)

The physical picture is clear. The interaction of the shock wave § with
the expansion wave R inevitably leads to the weakening of the shock wave
intensity and, by the same token, to the change of the front position. At
large distances from the profile, when the shock wave 1s essentially damped
out, its behavior is determined by a linear hyperbolic equation (see Section 5),
Therefore, tang- 1/m (Fig.3). The conclusions reached here colncide
exactly with known results [2 and 5 to 7).

To get & complete representation of this interaction 1t 1s necessary, even
if on an approximate basis, to estimate the thickness of thé shock wave,
This can be done only by means of an analysis of the full equation (2.1).

4, According to (2.4), the solution of the heat conduction equation has
the form

1 ¢ (v — E)2
9='2“7,—‘——§y8 exp [—-—‘belﬂ,%f(&)]d& (4.1)

-0Q
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For a plane wedge, with relations {3.3)

-k
i e (4.2)
where
s
;1 - T+ +1 T+
£ —T/EE P ;\'dx (1{)1 —.:———-—z,——-«- s 1“ = -—7—~> (4.3)
z

(4.4)
Yy
1 2 2 o T
i1+ === Py —":"" P ( =2 - g Z—E->
-+ z[ -+ Vﬂ§’ € ax]exp[ g (v 2@}-} Py 5 Y=g
,  2ak 1 M* R M v
Yy Donky, B sy =27~y (4.5)

It is assumed that [t -+ <" -+ 1|3b, (v 4+ (306, |2+ 1308 |<|>0.
Then, using the asymptotic error integral, we can find an approximate expres=-
sion for the funetion wu .

-

3=

-u

Il !
e T

Fig. 3 Fig, &

As in the case of the quasilinear equation (3,1}, we must distinguish
between two ranges of values of the parameter r’. When ~+’< 27, wu has
approximately a trapezoidal form (depending on ¢ ) and, for |Tf< T/ it 1s
expressed as follows:

w kv /mv -+ O @) (4.6)

This corresponds to an expanslon wave, and, to an accuracy of terms of
the second order of smallness, coincides with the solution of (3.1). Small
terms in (4.6) indicate a smoothing out of the ends of this wave at the
expense of dissipation in the medium (Fig.h). .

If |t|> ¢/, then in the neighborhood 1,= — )] — 7'/2
1

k . 2t -1
U= - 1 4~ exp|— B (rt + 1y (4.7)
Since | 2<’ (v 4 ) |>> 1%, then the exponent defines the position of the
steep shock front, as in (3.5).

Expression (4.7) enables us to estimate the thickness of the frount of the
shock wave (measured along the direction of the free flow).
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b2 4 wvm
T T+ 1 gk
The expression for the shock front thickness 1is

£ consistent with formulas previously obtained [5 and
! 8]. Thus, for example, it is shown [5], that at a

small intensity of the shock wave the thickness of
J. /4 the shock 1is
and=x | ¢Z 4vye

\ 7 =
A== @V ap?)gat (4.9

Av=Az = (4.8)

Pi 5 where p, and p,, respectively, are the values of
. pressure before and after tHe shock.

Using the relations

Pe—p1  YM? (aiV) 1tV
n T yYymME=1" op*/s— 1 pv’
where U 1s the wedge angle, we can obtain Formula (4.8) from (4.9).

When 1‘> 21, then up to |7| = 21, the previous argument 1s correct,
i.e.on this part again u =z xv/m1’. For +'> |7|>1

kv [ 2V ar(v+ 1) 12 — 217't]-1
~—|1— exp

1V = a?

A
~mt’ b 1 b? (4.10)
In this expression the exponential term 1s essential for the formulation
of the wave front, the second term gives an expansion wave. In the neighbor-
hood 1,%= 271'] u 1s reduced to b times relative to 1ts maximum value.
Here 1, 1s the same as in (3.9) and defines the front boundary of the shock
wave, Kn estimate of the thickness of the shock wave front now gives

b? 2 vy 2
PSS SN S .
v YW Vrrd M s VKl (4.11)

Thus, the interaction of the expansion wave with the shock wave causes
not only a reduction in the shock wave strength. Together with this there
arises a spreading, the extent of viscous interaction 1s Increased.

As is seen from (4.11), the thickness of the shock wave depends, as before,
on the parameters of the free flow, the intensity of the wave and the dis-
sipation in the medium. But, in addition, in the case considered, the thick-
ness gradually increases proportionally to the square root of the distance
from the streamline profile.

The existence of a diffusive spread of the shock wave occurs in practice
for any form of stream.ined wedge profile. A calculation, not given here,
for example, can be carried out to estimate the thickness of the front for
a parabolic profile

ko kil
fz) = 53( — %) —HI<z<0, [l =% (x> 0)
shown in Fig.5. With the notation used
B V2 P
~ - A2
Ax~,r,(l+1> (4.12)

It is clearly seen, that if T /[ <€ 1 (for ky/1<€ 1), then the shock
front thickness 1is again constant. For values ky/I>>1

4 v y s .
Ar = VoG D M2 -'v—o(—i) (4.13)
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5. As was seen above, all relations are to be defined in terms of para-
meters b and 7', which both depend on the distance y . Therefore, as
follows from {4.5) there can be two distinct cases {(Fig.6).

If b> v, then Equation {2.1) in practice reduces to a linear form.
Indeed, the exponents in expression (4.4%) then vary slowly, and therefore

f%'c by
I+A=1+ 171.-; (L e ¥dx + l e—x'dx) =11z 5.1

where the integral term on the right-hand side, 2 , is small. Taking this
into account we obtain

I s

’ Tl -2 = —=\ ¥z (5.2

s L A+1 Va 2)
’ e

Now the process 1s described with sufficient

] accuracy by
au_ u
FYi 855 (5.3
4% Y% % § From this it follows that the shock wave _
and expansion wave decay equally At ~b~ ¥V v.
Fig. 6 For small y the relation 53> 7’ holds

everywhere. But as the coordinate y 1is
increased, the parameter in the inequality referred to necessarily changes
sign (for y = ¥.). The picture of the behavior of the gas 1ln space depends
on the distance from the profile to be considered. In case

8m>v
= THFE DR Mk, < Ys

on the section y, < y <y, the front of the shock wave has constant thick-
ness, defined only by the stream characteristics. If » and v’ are equal
for y,, exceeding y, , then the relation giving the thickness of the front
in terms of distance remains valid however far we recede from the profille.
The interactlion of the shock wave with the expanslon wave 1s somewhat inten-
sified by this relation. The last case 1s possible for very small apex
angles of the wedge or for rather disslpative media. In the case Y, => Vs
the meaning of the shock wave 1s assentially lost.

Thus, if ¥1<€ ¥s» then the problem 1s described by Equation (2.1). When
Hn >) Y«, sufficient accuracy can be obtained by using the linear equation
{5.3).

The authors are indebted to Kh.A. Rakhmatulin, M,D. Ladyzhenskil and
V.A. Eroshin for useful discussions.
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